THE CHINESE UNIVERSITY OF HONG KONG
 DEPARTMENT OF MATHEMATICS
 MATH2010C/D Advanced Calculus 2019-2020
 Assignment 1, Due Date: 23 Jan, 2020

1. In $\triangle A B C, \overrightarrow{A B}=4 \mathbf{i}+4 \mathbf{j}, \overrightarrow{A C}=-12 \mathbf{i}+8 \mathbf{j}$ and points P, Q lie on $B C$ such that $B P: P Q: Q C=1: 2: 1$.

Find $\angle P A Q$.
2. Let $A=(4,3,6), B=(-2,0,8)$ and $C=(1,5,0)$ be points in \mathbb{R}^{3}.

Show that $\triangle A B C$ is a right-angled triangle.
3. Suppose that $\mathbf{m}, \mathbf{n} \in \mathbb{R}^{n}$, where $|\mathbf{m}|=2,|\mathbf{n}|=1$ and the angle between \mathbf{m} and \mathbf{n} is $\frac{2 \pi}{3}$.

If $\mathbf{p}=3 \mathbf{m}+4 \mathbf{n}$ and $\mathbf{q}=2 \mathbf{m}-\mathbf{n}$, find
(a) $m \cdot n$,
(b) $|\mathbf{p}|$ and $|\mathbf{q}|$,
(c) the area of the parallelogram spanned by \mathbf{p} and \mathbf{q}.
4. Suppose that A, B and C are points on \mathbb{R}^{2} such that $O A B C$ is a kite with $O A=O C$ and $A B=C B$. Let $\overrightarrow{O A}$, $\overrightarrow{O B}$ and $\overrightarrow{O C}$ be a, b and \mathbf{c} respectively.
(a) Express $\overrightarrow{A B}$ and $\overrightarrow{C B}$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}.
(b) By considering $A B=C B$, show that $\mathbf{b} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{c}$.
(c) Hence, show that $O B \perp A C$.
5. Let $\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}, \overrightarrow{O B}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}, \overrightarrow{O C}=5 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Find the volume of tetrahedron $O A B C$.
(Hint: Its volume equals to $\frac{1}{6} \times$ volume of parallelotope spanned by $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$.)
(c) By (a) and (b), find the distance from O to $\triangle A B C$.
6. Given $A=(3,-1,3), B=(0,7,-2)$ and $C=(-9,3,-3)$ be three points in \mathbb{R}^{3}.
(a) Find the coordinates of a point D if $A C, B D$ are perpendicular and $A D, B C$ are parallel.
(b) i. Find $\angle D C B$.
ii. Show that A, B, C, D are coplanar (i.e. lying on a same plane) and find the equation of the plane which contains them.
iii. Show that $A B C D$ is a square and find the area of it.
(c) $V A B C D$ is a pyramid with base $A B C D$. If $V=(12,-14,-12)$,
i. find the volume of the pyramid;
ii. find the angle between the plane $V A B$ and the base.
7. Suppose that $L_{1}: x+1=\frac{y-2}{-2}=\frac{z+3}{2}$ and $L_{2}: \frac{x-1}{-1}=\frac{y+2}{2}=\frac{z-6}{3}$ are two straight lines.
(a) Show that L_{1} and L_{2} intersect each other at one point and find the point of intersection.
(b) Find the acute angle between L_{1} and L_{2}.
(c) Find the equation of plane containing L_{1} and L_{2}.
8. Let $\Pi_{1}: x-2 y+2 z=0$ and $\Pi_{2}: 3 x+y+2 z=4$ be two planes and let $P(1,2,-1)$ be a point in \mathbb{R}^{3}.
(a) Find the angle between Π_{1} and Π_{2}.
(b) Find the equation of the line passing through the point P which is parallel to the intersection line of the planes Π_{1} and Π_{2}.
9. Let $A=(1,1,0), B=(0,1,1)$ and $C=(1,-1,1)$ be three points in \mathbb{R}^{3} and let Π be the plane containing A, B and C.
(a) Find the equation of the plane Π.
(b) Suppose that

$$
L: \frac{x-1}{5}=\frac{y-1}{6}=z
$$

is a straight line passing through the point A and L^{\prime} is the projection of L on Π.
Find the equation of L^{\prime}.
10. (a) Let Π be a plane in \mathbb{R}^{3} given by the equation $A x+B y+C z+D=0$ and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a fixed point. Show that the perpendicular distance between Π and P is $\left|\frac{A x_{0}+B y_{0}+C z_{0}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$.
(b) Let $\Pi_{1}: 2 x-2 y+z-4=0$ and $\Pi_{2}: x+2 y-2 z=0$ be two planes in \mathbb{R}^{3}.

Find the equation of plane(s) passing through the intersection lines of plane bisecting the planes Π_{1} and Π_{2}.
(Hint: Suppose that \mathbf{p} is a point lying on the required plane, then the distance between \mathbf{p} and Π_{1} equals to the distance between \mathbf{p} and Π_{2}. Draw a picture to see why there are two such planes.)

